
NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



* AFCRL-63-137

Scientific Report No. 6

Contract AFI9(604)-7493

March 1963

I * applied m athem a tics 00

L.LJ Decoding Rules for Certain

u "D Product Codes

::: C/)

it by

L. Calabi

, g, H. G. Haefeli (Subcontractor)
'U

Air Force Cambridge Research Laboratories

Office of Aerospace Research

United States Air Force
04 Bedford, Massachusetts

04

PARKE MATHEMATICAL LABORATORIES, Inc.
One River Road e Carlisle, Massachusetts

0



* AFCRL -63-137

Scientific Report No. 6

Contract AF19(6o4)-7493

March 1963

I •a p p I i e d e a f h e ma tI c s ee

* Decoding Rules for Certain

Product Codes

by

L. Calabi

H.G. Haefeli (Subcontractor)

Air Force Cambridge Research Laboratories

Office of Aerospace Research

United States Air Force

Bedford Massachusetts

0

PARKE MATNEMA TICAL LABORATORIES, Inc.
One River Road * Carlisle, Massachusetts

0



PARan MATHmxATICAL LABOEATOwE8, INCORPORATED

ONE RIVER ROAD 0 CARLISLE, MASSA4HUSETTS

Requests for additional copies by Agencies of the Depar":--

ment of Defense, their contractors, and other Government

agencies should be directed to the:

DEFENSE DOCUMENTATION CENTER (D.D.C.)
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for

ASTIA services or have their 'need-to-know' certified by

the cognizant military agency of their project or contract.

All other persons and organizations should apply to the:

U.S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25., D.C.

A limited number of copies are also available by writing to:

PARKE MATHEMATICAL LABORATORIES, INC.
ONE RIVER ROAD
CARLISLE, MASSACHUSETTS



PAIE MATHEMATICAL LABORATORIES, INCOORATED 7493-SR-6
ONE RIVER ROAD * CARLISLE. MASSACHUSETTS

Abstract

Decoding procedures are formulated, and their performance

established, for products of binary group codes of even

minimal weight and for Hobbs' codes of any dimension.
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Introduction

In our effort to discover decoding procedures for Kautz codes

we have found one for the particular class of Hobbs' codes , Y based on

the product structure of these codes. Our procedure cannot, then, be

immediately extended to codes K sirce these are not necessarily

products, if e>) ; but it was easy to deduce decoding rules for arbitrary

products AB (somehow related to considerations of [l]). These are set

forth and studied in Chapter I below, where we have restricted ourselves

to consider factor codes A, B for which our decoding procedure has

substantial performance. More specifically we consider only binary group

codes for which the minimal weight is even.

In Chapter II we formulate and study the decoding rules for Hobbs'

codes. Although the results of this chapter are related to those of

Chapcer I, we have preferred to give many independent proofs.

For any code A we shall denote by t r(A) the minimal weight of its

elements, by e(A) its packing integer (in our case .2e(A)-' 4- Z (A)

and by v (A) the length of its sequences. Further, 6(A) will denote the

maximal length of correctable bursts: a burst is correctable if it is

the only coset leader or if it is the shortest burst among the possible

coset leaders. Similarly C(A) will denote the maximal length of

correctable cyclic bursts; the length of a sequence (Xi, ..., XI)

considered as a cyclic burst being defined as follows: mill (0-j -i) for

all integers L! 3 such that x, = > = /  but Y=o if

" iii
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Chapter I The Product of Two Codes

1. Notations and Assumptions

If A and B are two codes, we denote by AB their product, that is

the code whose elements are sequences Xf, , X11 ) X1,3, , X ) ',2 Ahc8))

of V1(A ) (A)%1(6) terms xL1 such that, for any fixed i

Cx ., , Vj z a ) is an element of B and, for any fixed 3

(X, X.; , Xn(A)J ) is an element of A (see [2], [3], [41, [5]). We

can clearly represent the elements of AB as matrices with i(A) rows

(X41J xi;L . .. " ) and h(B) columns (Yil ,z3 ), , X)( ) . For

fixed i , the collection of the /4 rows of all the elements of AB

form a group, hence a code, denoted 'k : it is obviously isomorphic

to B. Similarly A- will denote the code of all the 3+j possible columns.

We assume to have decoding rules for A [and for B] to correct all

configurations with not more than e(A) [and e(B) ] errors, all bursts of
length not more than 6(A) [and 6(B) ] and all cyclic bursts of length

not more than 6c(A) [and 6,(5) ]. Notice that, even if e(A)= CA)4=(A) O

we will always be able to detect the presence of one error, since xar(A)

is assumed even. Similarly for B. Also, since the A3 are isomorphic

to A, all our assumptions apply as well to each one of them. Similarly

for the codes B. , isomorphic to B.

In the following we shall say that an error configuration in A 3

is correctable if and only if the number of errors is -e (A) , or the

configuration is a burst of length ± (A) , or a cyclic burst of length

__ K (A) . Similarly for B

2. The Decoding Rules for AB

The decoding proceeds in two major steps. The first consists

in applying, when appropriate, the decoding rules for A to the 4(B)

"columns" Aj and in keeping track of the work performed using a numerical

function denoted . The second step applies the decoding rules for

-1-
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B to the v)(A) "rows" BL obtained after the corrections required by

Step I.

In precise details:

Step I For 13 1 .2,... )

) no errors are dete'ted in A: set -

>) i>e errors are detected in Aj and they form a

correctable configuration: correct them and set W

errors are detected in and they form a configuration

which is not correctable: set --.

Step II in the matrix obtained after application of Step I:

no errors are detected in any f3 , Z= I, Z.I I (.):accept.

G) r>o errors are detected in B, , r /.2,0 f and they

form a correctable configuration for r . , - o/ with ok: -

1) if o = , correct in each B, and accept;

2) if o4.y , let 3, ... , J - be all the integers

such that (i=-/ and, if ' =0e(B) /- 012
let~ ~ 0., be such that )> (i) for all

J . ,. then if a) e +-B) I Fo r-,--'

correct the errors in B 6 - ,A, and change

all the terms Y£rj).j z," j and [Xi ,

for Y, = fl v..o * and accept.

in all other cases, reject.

To "change" X, means to substitute it with X -+/ , the sum being

modulo 2. It is important to emphasize that the checking equations for

the rows of the received matrix need be computed only after having

performed Step I. The function I plays an important role in Step I 6)

2), whose formal statement is somewhat complicated. Notice that if

0%. e(B )*- there is no need to search for the integers ,,,

at which I assumes its larger values; and if Li-/ e(B) 4 1 but no

integers "i/. ,,' can be found, then we are in case ; . The

examples discussed in the next section will illuminate the situation.

-2-
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3. Examples

A) Let A=) be the (7,3) code generated by

1001110, 01001111, 0011101;

it is easy to check that w(A) = , e(4=) and b(A)= b,(A)= .

Suppose we send the zero matrix (=zero element of AB, which is a

(49,9) code with .kr(AB) /j ) and we receive

0 0 0 0 0 0 O1

0 0 0 0 0 0 0i

0 0 0 0 0 0 01

E~ 1 o 1 o 0 0 o

0 0 1 0 0 0 0

1 0 1 0 0 0 0Lo 0 0 0 0 0Oi

LO 0 o o o 0 ol

A, A2 A3 A4 A5 A6 A7

Step I has to be applied as follows:

3 S (3,) gives the new third column

1
0

0
1

1

0

and (3) 1

-3-
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We thus have to apply Step II to

0 0 1 0 0 0 01 B

0 0 0 0 0 0 0 B2

0 0 0 0 0 0 0 B 3

1l= 0 1 0 0 0 0 B 1

0 0 1 0 0 0 0 B5

1 O 1 0 00 0 B 6
-0 0 0 0 0 0 0 ]-

Notice that Step I has increased the number of errors! We are in case
of Step II: BI, B 4, B5 and B6 have errors, which form correctable

configurations only in BI and B Thus subcase 2). But 6= -=/

that is r - = ? = (B) 4-/ Accordingly we correct errors in B

and B 5 and change

X41 since

( since 3) / > for -#3.

This yields obviously the zero matrix. Why do we change the elements

of B1, and B6 in the first and third columns? We know, since j(i)=

that after Step I there are still errors present in AI; and we know now

that there are errors in B and B6 . Thus the intersections X,,, and X(4

are singled out as probably in error. But if only these two terms

would be erroneous, we could have corrected them in B and B6: hence

these two rows contain further errors. In all other columns we have

(after Step I) an element of the code A: which to choose? By the

maximum likelihood principle, the one (or those) in which we have made

the greatest number of corrections (in this case, one correction).

Hence we change X*3 and x .

The next example will illustrate this idea again.

-4-
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B) Using for A and B the same c6des, assume we receive

0000011 1
0i 0 1 0 1 0

0 0 0 0 0 0 0

E o o o o o o0

0 0 0 0 0 0 0
10 0 0 0 0 0 0

[a 1 0 1 0 0 1

Step I yields

[0 0 0 0 0 0 0]

0 1 0 1 0 0 0

0 0 0 1 0 0 0

EI 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 1 0 0 0j

with ()0 (2, ) = - / , 1, (,3 ) = / , I . (V ) - / , 7 (-S') = 6 , (6C.) =.,, ,

and 7 (T7--z" Notice that the errors of E in A and A7 can be corrected

since they are cyclic bursts of length ± 6c(A) We find now that B3

has correctable errors, but B2 and B7 have errors we cannot correct.7

Hence again we check d- and -V: 62) = yY =--/ , that is d= -,.

Since 6-= C(B) -# we correct the error of B and change X, , )X
3

XT7 z , obtaining the zero matrix. Here we disregard A6 and A7

because C- is "large enough": we do not need to assume that we have

made erroneous changes in Step I.

C) A third example with the same codes will illustrate the

correction of cyclic bursts. Suppose we receive

-5-
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1 1 0 1 1 1 1

1 0 0 0 0 0 0

0 0 0 0 0 0 0

E= o o o o o o o

0 0 0 0 0 0 0

0 0 0 0 0 0 1

1 0 0 1 1 0 1I

After Step I we obtain

1 0 0 0 0 0 1

1 0 0 0 0 0 0

0 0 0 0 0 0 1

E 1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1
0 0 0 0 0 1-

The i(j) are easily written down, but are not important since now

Step II () 1) applies to give at once the zero matrix.

D) Assume now that A is the (4,3) code of all the sequences with

even weight, and similarly B is the (5,4) code with w-(3)=2

Then AB is the (20,12) 2-dimensional Hobbs' code. We have

Suppose we receive

0 0 0 0 *0

10 0 0 00

Lo 0 0 0 o-

we obtain I(/) =,/W =I(3) the others being o

And we detect errors in B2' We cannot apply Step II ) 2),

-6-
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because now C.3 > e(9)/ 4- 1, . Thus, we reject. And

this is in proper order, since we would have had the same

1, and same detection of errors in the SBjs if we had
received, say

,'D 1 1 0 01

0. 0 0 0
0 0 0 0'

Finally note that by our rules we would accept the matrix

ro1 1 0 0]
0 0 0 0 ol
0 0 0 0 01

because of Step II -Q But in this connection see Theorem 2

and 3 below.

4. The Main Theorem

In order to simplify the formulation of our results it will be

convenient to adopt the following notation and terminology. If E is an

error configuration (that is, a matrix giving the difference between

what was sent and what has been received), denote by E , 3=/z,, , (s)

its columns: E3 is then the configuration of the errors belonging to

A .We shall say that E, is A-correctable if it is correctable as

error configuration in A-= A (see end of section 1). Finally, we

will call a set E, E .. , B-correctable if the sequence

(;b, * .. , ))with j, .... - 6 and =o if . r

is correctable as error configuration in B. This terminology can be

illustrated using the examples above. Thus, in example A), E1 and E3

are not A-correctable, although the decoding rules for A will operate

on E 3 as indicated: but E 3 is not correctable since it has more than

e(A) errors and is a burst longer than 6(A) or 6,(A) . In this

-7-
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same example, the set El, E3 is not B-carrectable, for the same

reasons. In example C), E 1 and E7 are not A-correctable, but their

set is B-correctable, since (1,0,0,0,0,0,1) is a cyclic burst of

length.--- (a).

Theorem 1

The decoding rules given for AB correct every error configuration E

satistying any one of the following conditions:

1) The set of E which are not A-correctable is B-correctable;

2) The number of errors does not exceed

3) E is a burst of length not exceeding

4) E is a cyclic burst of length not exceeding

Even before proving this theorem, let us remark that ' )r(AY-.,r(A),w(8

and thus, under our assumption, e(AB=e(R)#/X e(3)#Z)-/

if eb. =o we have then E= c&AB

Corollary 1.1 If e(a =o , or equivalently if iA-(B)=z, the

decoding rules given above for AB correct all configurations with at

most e(AB errors.

The proof of the Theorem if E satisfies 1) is straight forward.

After application of Step I we will be left with errors (original or

newly made) only in the non-A-correctables columns, say, E , EJ .. -.

but by assumption these form a B-correctable set. Hence Step II ci-)

or Step II ( ) 1) will apply. Thus all errors will be corrected.

Notice in particular that if all ES are A-correctable, then the correction

of E is already performed after Step I.

Consider now case 2). If at most e(a) of the E are not

A-correctable, we are back in case 1). Thus we can assume at least

(19)+I non-A-correctable E S . In each of these, then.there is at least

-8-
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errors: because of the value of f , this implies also that
there are at most, and thus exactly, e(8)-.-/ E;s which are not

A-correctable. Let these be E, E , .,, if , ,°.

with 1N,) (j.. and >-I If

and thus -C _-6 , Step I followed by Step II 13) will correct all

errors. In fact, after Step I we will obtain a matrix E / with ones

only in the columns 3 , . Since 6-= e, each row will

contain at most eB)4-/ errors: we will thus detect them all and be

in Step tS) 1) or 5) 2). This reasoning can be applied also if -30

provided we show 1(i,) xj' for all j ;' f . We will even

show j(-kJ>Mwhere n denotes the number of all the errors of E not

contained in Ej,, E "' EJ , ' . Let 2 be the total
number of errors in E, e the number of errors in Ej Ej

J, 0 ig 2 J 1 " .)

and . the number of errors in Le Then = - € and

- e(A) 4-1 Thus, for a fixed *&o , we have

or

.2 e (A) Z- Ea -

On the other hand, L,( )> .w"(A) (for any code A, the number

£ of errors present plus the number of changes made is at least

,w(4) , if the changes do not reproduce the sequence originally sent);

thus

This terminates the proof of case 2).

For case 3), remember first of all that by definition of product

code., the order of transmission is "row-wise", as indicated in section

1 above. This implies that X will be the E(Z-/ )h'() 4-jI+ term

sent. Let E then be a burst of length at most , , starting at XI,.-

-9-
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and ending at X,,..:

Thus, if /2 - 6()((B)4 ((D 4 there are at most 6 (5) non-A-
correctable E- 5 which can be easily seen to form a B-correctable set

(cyclic burst). We can thus apply case 1). If now /3= e4,)(eb-/

there are at most c6)7-/ non-A-correctable fils : if less than

(b) 4- then we are again in case 1). If exactly e( ) # they

will yield either,/1.')=-/ or I (j)_ Z (A)+/ , since each such

has weight at most e (A)4-/ (AYZ . But each of the A-correctable E

has weight at most c(A) , and thus Step II /9) 2) applies.

The proof of case 4) is similar.

5. Further Results

A deeper analysis of our decoding rules gives the following theorems.

Theorem 2 In the presence of '7 errors, it is possible to obtain

and accept, after application of the decoding rules given above, a

matrix which is not an element of AB.

In other words, the checking equations may fail to be satisfied after

decoding, even if the rules specify to "accept", provided there are more

than r errors. The proof consists in giving an example of this situation,

for arbitrary codes A and B.

Let 6= (6 I ,.. , (B))be an element of B with in

which 1, . (a*.. ) are the terms equal to one. Consider then an

error configuration E such that E. is a column of zeros if J# 0,, ,

and E. E ,_ is a non-A-correctable configuration

of exactly e(jAi- errors (such a configuration exists because of the

definition of C(A) ). E has then ,. -,2fV e'-,
errors. Step I will require no changes and give J')= or J -/

Step II 13) 1) will apply since in each of the e(A)#-i rows with errors

we can obtain the sequence 6 by changing e(B) terms. The matrix so

obtained, however, does not belong to AB since the columns are not

-10-
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elements of A.

This situation can be easily corrected:

Theorem 3 Suppose the rules for Step II are modified to require

acceptance of the decoded matrix only if

1) ' >-Ifor all j , in Step II oL)

2) newly computed checking equations for each Aj are
satisfied, in Step II g) 1) and 2)

3) newly computed checking equations for each .8 are
satisfied, in Step II /J) 2).

Then no matrix will be accepted if it is not an element of AB.

The proof is obvious and will be omitted.

We can improve the correction of bursts, without modifying the

decoding rules, provided in A no burst of length 6 ,/ [or 6,,/ ]C4

is "wrongly corrected":

Theorem 4 Assume that in A each [cyclic] burst of length 6,A, +i (4Ji

is A-correctable or belongs to a coset containing no A-correctable

configurations. Then the decoding rules for AB correct any error

configuration E which is a [cyclic] burst of length not exceeding

If / ( A) n - b b Y..2 this theorem is

contained in Theorem 1, and there is nothing new to prove. Suppose thus

B b() hQ I 1 6- (bA) -r(,>-e 0>)--/. Following the

reasoning given in the proof of Theorem 1, we see that now there are

at most C(, non-A-correctable E; ) , which are all bursts of

length b(/+)-i Because of our assumption, we have now c.2 =-/
and thus Step II {3) 1) or II [,31 2) will apply.

Consider now the code BA. For its elements we may take those

of AB, but the order of transmission is now different. Instead of

sending a matrix row-wise, we send it column-wise, so that X; will

now be the EZ +(j-,'( )]' term. If we apply the decoding rules given

above, the first two statements of Theorem 1 will still hold true, since

-11-
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they are independent of the order of trAnsmission. In particular

it follows from Theorem 1, 1) that we can correct any error configuration

of BA which consists of several bursts, each of length at most 6,(,),

provided any two consecutive bursts are separated by at least n(A)-L(h)

correct terms.

Chapter II

Application to Hobbs' Codes

1. Preliminaries

The decoding rules given above can be used with codes that dre

products of more than two factors, by convenient iteration. Moreover,

the formulation of those rules can be simplified if the factors have

particular properties. For instance, if e(B).=o the statement of

Step II 6) 2) becomes much simpler. In this chapter we will explicitly

give the decoding rules for g -dimensional Hobbs' codes, which are

products of 9 factors. We shall use the notation of Kautz Y<)(D, " . ,

to denote the g -dimensional Hobbsr code (i ... (,-)(-l) ... (-A -1 )

Remember that (see [6])

Y) V) -J

It is also well known that AAv( ... j ) is the product

S(<,) 0)(')... k (Y) , with the factors taken in this order. An

-12-
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element of is thus a sequence of the form

(X "'z - ) A l ... z I/ . ... . .. X . . ;

in which the term has indices &,) 6' satisfying

-k2

For some ;" with I= z - E consider now the set of those sub-sequences,

for which 1. . . -. are given values. This set is a

subcode of dimension jo for which we shall use the notation

Is , l,...,, . x +,. ; it is obviously isomorphic to k, (n ... ) 4P

We can clearly obtain , f ..z .11 A different such subcodes of

dimension

This structure of K, suggests that theorems for this kind of code

are best established by using induction proofs. That is why we consider

now also (;.i/'i-dimensional subcodes

k) 'A I S isomorphic to '

) ) Yj))

Up to isomorphisms, then we can write

where the L, are fixed integers. This decomposition will be used in

applying the decoding rules of Chapter I to obtain a decoding procedure

for Is,

2. The Decoding Rules for V._

We will have 6 major steps: step number f,+i applies to all

-1I - "
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one-dimensiorial subcodes of type 1~ , ,

We will again have a counting function A which associates to each

K i  
'

'
-f ,, ) an integer , . (Observe that

the parameters , . uniquely determine the subcode

To co e 'o 'j . in the steps below will mean:

set- a- ( .) d. )=-/ if there are integers 6,' j#J , such that

I s')=--/ ; otherwise set

.) equal to the number of terms X. of the

originally received sequence which differ from the corresponding terms of

the sequence obtained after application of the first f steps.

To compute the checking equation in t ([ , Z. * nf j ... ' ' ) will

mean to compute, modulo 2, d , . ; if this adds to

one, v.'e detect errors.

StepI Compute the checking equation in " ) for all

s) No errors are detected in m, a set as)=o"

errors are detected in K, (...; ): set

It is easy to recognize that this is Step I of the previous chapter,

incorporating the assumption A ; K' ( 04, o, .. cv) "

Having applied step f , w apply:

Step -fi-i Compute the checking equation in each 1<, -r-,... j s-.

for all , = *. ... , r= /,... and all d_ / ,, ,- - .

<) No er_,- rs are detected in any K,'(L,,..., Lf; 'it-,.-,;
compute -,( , -," 1 )"

.) rror;3 are d, tected in Z',(Z.,... _-; &T , 5 , 3 , ... ,

for ^= /, ., and there exists an integer j such that,

for all , -

Change " " for Y ,.. land compute
It. , .

-!lh_
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in all other cases: set o ., = - - /

We can recognize here Step II of Chapter I, formulated for

A3 = K(""..., ) j and 3= Kit . In particular, the

product structure of K1r' and the relation c(T)= o have been utilized.

The final step is very similar to Step II of Chapter I.

Step Compute the checking equation in K: (f/,.-'. LZ_; s) for all

o4)No errors are detected in any Q(, g,..., /  and
i(Z,)? for all c:. accept.

A)errors are detected in K , _ for '= I,,,
and there exists an integer i such that for all L-7.

JC3) (nt~>?c or .(cZ. ;' I N) - /

Change A , for Y - , . and accept.

Y)in all other cases: reject.

Before discussing the performance of these decoding rules, we give

an example in which the corrections in all the different steps are carried

out in detail.

3. An example

Consider K, (3,3,3,4): it is a (108,24) code with A = 16, = 7,

= 17. An element of this code is a sequence Z ' with
6' = 1,2,3

J.= 1.2,3

i = 1,2,3

Assume we receive a sequence in which the non-zero terms are

x 11) 1(1)

x,1.1 (3)

x, z4 (8)

x,,1Z (10)

(102)

(io4)

x (105)

x (107)
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The numbers in parentheses give the position in the sequence.

Since not two of the xts belong to the same Ki, )* ,

(no two have the same last three indices), Step I gives (j a ) o

for all values of the j-s, but for:

(1,1,1) = -1 (3,2,2) = -1

(1,1,3) = -1 (3,2,4) = -1

(1,2,4) = -1 ,.(3,3,1) = -1

, (1,3,2) = -1 ,(3,3,3) = -1

In Step II, for o?, , we detect an error in &C, 33,,)

namely x1111 ; moreover, we find 1(l,l,l) = -1 I, i)=O for L /

Thus, by II t3) , we change xllll and compute j(l,l) = 1. For o4 =, o= -

we detect no errors in any ( ,z) ; and since d(t 6 z) = -/Z

we set j(/ZJ=0 . For -3 7 e =e' &= .2 /, o/=

and o= = the situation is analogous, yielding zero for the

corresponding values of
The cases a= -

and e3 - v 3 are similar to the first case considered o= /

They all yield 1 for the corresponding value of , each requiring the

correction of, respectively,

X1113; x3322 x 3 3 3 1 , x 1 1 3 2 ; X 3 3 3 3 "

We have only to consider now, always for Step II, the case * = and

Here we detect errors in K (1;3;2,4) as well as in K' (3;3;2,4). But

we cannot apply II a) since we have (I,2,4) = -1 as well as

(3,2,4) = -1. Thus we are in II ) and set , (24) - -1.

After this, we have a sequence with only two non-zero terms, namely

Xll 4 and x3 32 4. To this sequence we now apply Step III.

If il we do not detect errors in any f< ,. 14 :,,),moreover,

(io<.3 Q-./ if £ ,z thus we compute I- by determining the number

of terms xi which now differ from the original ones:

= 2-.(2) 2 =
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If "¥ = 4 , we detect errors in , 1I5 S9) and K,'('3, 3) -3 .

Also ./ )=_/4 ( for i4 ; Thus we change xlJl 1 2 ,4 and

x3324 and set 1(4) = 2.

We have now the sequence of all zeros [and >-/ for all 6 ]

thus Step IV a) applies and we accept,

4. First Results

The following notation will be useful. If E is an error configuration

( that is, a sequence giving the difference between what was sent and what

has been received), and if L ,we denote by E G ,f *'' os) that

subconfiguration which belongs to ,(1'f1,...N. - ,,2 Y ; if

we shall set E( ,'" aI )- E . By f' we shall represent

the error configuration present after step number F (that is, that

sequence which gives the diofference between what was sent and what

is present after step numbei 
f ); similarly for Ef f, ,; .) )

If by 96 we denote the configuration of no errors (the zero sequence),

the decoding will be successful when E = If, finally, Xr denotes

an element of any K, , the decoding will be successful or leave

undetected errors if E = X .

The following lemmas will help prove our theorems below and, at the

same time, will clarify the operation of the decoding rules.

Lemma 1 For any error configuration and It: 8 , the following

two propositions are equivalent:

2. etac, ...* S)]oif y4E ; step S requires
acceptance, if y=&

Notice that step S requires acceptance exactly under those circumstances

under which any previous step yields 12!1. Thus we may omit the

distinction between S and s-= S The lemma is trivially true for

/ Let us then assume it for and prove it for g,4-

-17-
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Suppose first that Ef( .if the step

did not require any changes, then already Ei+(Z 1 . *, * -Z X

for all n " j/ ; thus by induction assumption ( ,, a*.., g -

and by the decoding rules (,, c. o)o. If we had some changes

in the step, by definition (as", . X 0) .

The proof of the converse is not as simple. We first assume to

have obtained >( P_ . 'S) _o by applying case c<) of step y*/

If /.for all Z./ , then by induction assumption

X" = ; and since no errors are detected in any

S df clearly as' ( oG> XP+/.

If ,..; )=-/ for at least two values of (., , then

by definition . >5--, contrary to the assumption. Thus,

the only case to consider is P4 .

if -,L d . By induction assumption i (c. c . ) X if

J 3 and EP '" =e£)$ X . Moreover E?-P(',,o, . . ), 4

for some , say ,.= otherwise we could not be in

case of step .fp / Let _ and

denote by XSz the sequence obtained from X,, by changing the

subscript from lez to J : is thus an element of the code

Set

)~ ) = "41=

The union of these is an error configuration . <

which differs from EP( ( .,)* /) only by the addition of the X' ' Xg

which are elements ot K V ' .) O .. , ). The two error

configurations are thus not distinguishable, and case <) of step +

still applies with " . ., But notice that in each

a,. , >, n ,) 7 " ) we have exactly one term in common

with V, ' . .. ) . Since this subcode and only this
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subcode among the ,(1,,... x; 4)r contains errors, we

reach a contradiction. Hence XL' *, o = - is not possible.

Assume now to obtain -t Z..; ) o by applying case /-)

of step f+' The two alternatives of this case can be now formulated:

there is a j such that E 4f( ,, . , . X

for I and E'I3, . ) C . . ) with

the two possibilities E?(3, aX4 2 . ,,. ) =X or Xy . In either

alternative we can proceed as above in case -,) to show that necessarily

the union of all the EY+/(Z , ) , ... , - , that is, FJ /(-. ,-

form an element X+.

We shall say that s.) gives a true value if either

, - or

We have then:

Lemma 2 If, , ) gives a true value for all

S/ -o4 , then so does also *,,

If (4.. - there is nothing to prove. So assume

- ) o'. We have two cases. Either all . .. _

or exactly one is equal to -/ In the first case, by assumption,
S= # and thus also E-?(4 ,, I= 1 q and a

fortiori E s '(oke 2 ,.". g) " In the second case, case /3) of

step jy -! applies to correct all errors present in E , ., ).

Corollary If, for some -, /-f " , all . o) give true

values, and if step & requires acceptance, then E 1P

In fact, again, step S requires acceptance in the circumstances

under which previous steps would yield - .

Lemma 3 If E(, , ) contains e rrors ,/

gives a true value. Moreover, if I , then

If -/ , the lemma is obvious. So assume it true for y , and

prove it for f, Let then E(es z ,.') '4 ) contain at most -2 j errors,

but assume that g),,..', does not give a true value. This

implies s..4)- and . 4 $' By

1 c-
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Lemma 2, there is j such that (j ., ) does not give a true
value, that is o( 0.. ')_>o and E?(J, f z,'.-, - .

Then, by induction assumption, E (3, "1"L?'"' 5 has strictlyf-I

more than a errors and consequently each Ef '*+,r?4 z,,,.4 9 has less

than _?r- I errors, for Z - . Thus either E -(+ , ,,, .. ) = )f

or + ,, $ -)" If E ? S, t , 9+5 " )= for

all Zf , j , then step *./ corrects all the errors of E?(j + . )

giving E+ 0 ) = , o o )o -/: both

alternatives are contrary to the assumptions. If + ) ,., )=-/,

then only for one value, say , of Z, , since. ,

By induction assumption, then, E ,, ) has exactly _7-

errors; f- +,,, " E) contains then these -
-/ errors as well as the

more than ?-P-/ errors of E(J,.f, ,,,49 : a contradiction again.

We have now only to prove the second statement of the lemma.

Assume , )z-/ If this is so because , - /

for at least two values of L4L , we can apply our induction assumption

and immediately conclude that ( ,, ) has at least Yerrors.

Thus 0 : (',, , , .i ) o for all L- , but we cannot apply step

t3/,t3). This implies that s ) for at

least two values of 1./ : by Lemma 1, these subconfigurations are

elements X? , thus contain each at least errors. E . .

has thus at least / errors.

Corollary If + . g contains less than -/errors, then

5. The Performance

We can now prove our main result for Hobbs' codes.

Theorem 5 The decoding rules for O, Y,) acce'pt only

elements of <, (k.,) ) and correct every error configuration E

for which there exists an integer 8, i - & such that one of the

following conditions is satisfied:

1) Each , o S) contains at most e (K"=
errors

-20-
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2) :P/ F and no . contains more than -
errors; and whenever E( - ) contains

errors, then every E (-.,,, -,,, at =) with

S contains less than .z-' errors.

3) i'>z and each AS ... ) is a burst or a cyclic

burst of length at most 6(Kr) = Y ., Y) k .,. ;'L , - ,

Moreover, in case 1) and 3) all the errors will be corrected after step "

while in case 2), they will be corrected after step P -/

An immediate consequence is:

Corollary The decoding rules for K, correct up to the theoretical

limits .(K s) and 6,(<K")= 1¢jKt).

The first statement of the theorem is contained in Lemma 1. To prove

1), we apply the Corollary to Lemma 3 to obtain E'P .. 56

for all /. ; and thus Ef = b and E5 = .

Consider now 2). By Lemma 3 and its corollary, E ' Jj +. 4 z,... y) ',

if 0r,1 4-- Thus step y-/, will correct all the errors (if. any) of
14-J (if

I- c) giving E S'-" . ))= s6 for all ,.".,

Let us now prove 3), under the assumption 5e= 3. If each , )

is a burst or a cyclic burst of length at most V),.+I , every E(c ) o...)os)

contains at most -?= - errors; and at most one of them, say

£(03,Q.., o will have exactly 2 errors. We can thus apjply the second

part of the theorem. To prove 3) in general, we use once more induction

on . Setting K,+1 = K , rK I by Theorem 4 we can correct in
,r+ (E- + '=  i) any burst (cyclic or not) of length at most 6(Ke),.+ -/

where, by induction assumption, 6(K,r) = Y 1)
1 

. . . 
Y)f + >. .. - - -7. +

In Theorem 5, which is now completely proven, we decompose K

into disjoint subcodes, all of the same dimension p . This decomposition

induces the decomposition of E into the , ... o., ) of the

theorem. Clearly, we can decompose also in disjoint subcodes of

dimensions f ... -?I I'.. If the corresponding subconfigurations

are denoted E,, E, -. let us assume that the decoding rules,

when applied to , yield E,, - 5' , for each 2J . The disjointness

of the subcodes insures us then that, when applying the decoding rules to K,

-21-
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we will also obtain E o for all ; and hence also 5 -

We have thus established the following result, of which Theorem 5

can be considered as a particular, more explicit case.

Theorem 6 Let E be an error configuration in (, ( , VIE) for which

there exists a decomposition of , in pair-wise disjoint subcodes

K . = / .7 ,, with the following property: for each -' , the decoding

rules for kY' correct the errors of E belonging to it. Then the

decoding rules for K, correct E.
For an example let Z=5 and consider K, 08> )q h')

with (arbitrary i )12 ) and Y, = = 3 . For error

configuration E we assume:

at most S errors with 5th index equal to / that is in C,= EC/)

at most 4= og2-! errors with 4th index equal to / and 5th index equal

to Z , that is in E = Z)

a burst of length at most (= ,-/ in E = , (z,.,)

at most = -. error in each E. E ( )

at most Z3-= 1 errors in E. E- V, z

a burst of length at most 7,5- -- 4 4 0 - in E, =E(3).

in this description we have already decomposed E and K as required

by the theorem. The subcodes are as follows:

Is,

3 n' CP, 6_2++ o+ +

-3)

-22-
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If we apply the decoding rules to K, i4e will correct t,,

after the second step = = ,Z ) in symbols EL

Similarly E. and -o

6. Additional Remarks

For short, let us call decoding I the one described in Chapter I,

and decoding II the one described in Chapter II. Then we can say that

decoding II is essentially obtained by iterating decoding I thanks to

the relation

r\ "Y11) II3g (** .. ( K1,e ") 1 "(Yij) <, (,. )),. k ve

Since the two decodings agree if = .2. we can also express their

relation as follows. Decoding II for t<, ( ,, *... I)S) is obtained by

applying decoding II to K("C,. h y l ) (and to K(:i 5 ) ) and

then decoding I to )IS Cf,')-,

Suppose now that we apply decoding II to 61, >.. , D) and

to *. -S( , ,. -)) , and then decoding I to their product

K1 (I,,.,.,-r) j( -ys,, ... , y) , for some f /-/ . Then Theorem 1

and Theorem 5 insure us of correcting only up to 6 errors, where

Z-- 2 $ 2 - - / - .Z -/

and similarly for the burst length

The remark at the end of Chapter I however suggests to apply

decoding II to K,($ ... , h. and to K- ,... 9) and then decoding I

to the inverted product K,1 -" ( h', ) " ' , )7 ) K, "" ),

This is equivalent to applying the decoding discussed above, but to

send the sequences of' X ,,.., fx / not in the order described in section 1,

but in increasing order of K< where

' ' i 2
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Under these assumptions we can correct any series of bursts provided that

each one has a length not exceeding 6 (,<P) and that any two are separated

by at least i, r 2 .. ii - correct terms. At the same time, an additional

number of errors not exceeding ?. -- / will also be corrected.

-.24-
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